This function filters the ETS so that only entries that could have been missing are evaluated for each variable.

summarise_missingness(df)

Arguments

df

A dataframe containing cleaned ETS data as produced by tbinenglanddataclean.

Value

A named list summarising missing data for the following variables: date of starting treatment, date of ending treatment, date of death, and cause of death.

Examples

## Code summarise_missingness
#> function (df) #> { #> starttreatdate <- NULL #> startedtreat <- NULL #> nn <- NULL #> per <- NULL #> overalloutcome <- NULL #> pretty_per <- NULL #> dateofdeath <- NULL #> tomdeathrelat <- NULL #> txenddate <- NULL #> date_treatment <- df %>% filter(startedtreat %in% "Started") %>% #> count(starttreatdate) %>% add_count(wt = n, name = "nn") %>% #> filter(is.na(starttreatdate)) %>% mutate(per = pretty_percentage(n, #> nn, 1)) %>% pull(per) #> date_treatment_end <- df %>% filter(startedtreat %in% "Started") %>% #> filter(overalloutcome %in% "Treatment completed") %>% #> count(txenddate) %>% add_count(wt = n, name = "nn") %>% #> filter(is.na(txenddate)) %>% mutate(per = pretty_percentage(n, #> nn, 1)) %>% pull(per) #> date_death_missing <- df %>% filter(overalloutcome == "Died") %>% #> summarise(missing = sum(is.na(dateofdeath)), n = n()) %>% #> mutate(per = pretty_percentage(missing, n, 1)) %>% pull(per) #> tomdeathrelat_missing <- df %>% filter(overalloutcome == #> "Died") %>% count(tomdeathrelat) %>% add_count(wt = n, #> name = "nn") %>% mutate(pretty_per = pretty_percentage(n, #> nn, 1)) %>% filter(is.na(tomdeathrelat)) %>% pull(pretty_per) #> missing_stats <- c(date_treatment, date_death_missing, tomdeathrelat_missing, #> date_treatment_end) #> names(missing_stats) <- c("date_treat", "date_death", "cause_death", #> "date_treat_end") #> return(missing_stats) #> } #> <bytecode: 0x55630ca4c238> #> <environment: namespace:ETSMissing>