getTBinR 0.7.0 should now be available on CRAN. This release includes some new experimental data (TB incidence by age and sex) that for now is only partly supported by {getTBinR}. It also brings {getTBinR} into line with new (or new to me) {ggplot2} best practices. This involved two major changes (plans are also afoot for an S3 plot method):
Moving from a full @import of {ggplot2} to only using @importFrom for required functions (something that I had previously been too lazy to do…).
Last week the UK pledged to contribute £467m a year for three years to the Global Fund. The money will be spent on: providing tuberculosis (TB) treatment for more than two million people; 90 million mosquito nets to protect people from malaria; and treatment for more than three million people living with HIV. This funding will drastically improve many peoples lives and needs to be celebrated even if it comes from a broadly unpopular source.
getTBinR 0.6.0 is now on CRAN and should be available on a mirror near you shortly! This update includes multiple new Tuberculosis datasets - increasing the available number of variables through getTBinR from 80 to over 450. To help support these new datasets the package now contains a dataframe listing the available datasets and search_data_dict can now also be used to search the data dictionary for variables by dataset. On top of this, this update contains suggested changes by reviewers (@rrrlw and @strengejacke) from JOSS (see here for the review thread).
getTBinR 0.5.7 is now on CRAN and should be available on a mirror near you shortly! This update mainly focussed on building out new country level Tuberculosis (TB) report functionality but along the way this led to a new summary plotting function that quickly and easily shows TB trends across regions and globally. I also had some fun developing a hexsticker (Tweet at me with something you made using the package to get a physical version - whilst my postage money lasts…), reducing the dependencies with itdepends and pkgnet and dealing with some breaking changes from an uncoming dplyr update (my own fault for missing a function import).
getTBinR 0.5.5 is now on CRAN and should be available on a mirror near you shortly! This update is mainly about highlighting the availability of TB data for 2017, although some small behind the scenes changes were required to get the code set up going forward for yearly updates. A few more plotting options have been added, along with the corresponding tests (definitely the most exciting news). The full changelog is below along with a short example highlighting some of the changes in the 2017 data.
getTBinR 0.5.4 is now on CRAN and should be available on a mirror near you shortly! This update includes an additional data set for 2016 containing variables related to drug resistant Tuberculosis, some aesthetic updates to mapping functionality and a new summarise_tb_burden function for summarising TB metrics. Behind the scenes there has been an extensive test overhaul, with vdiffr being used to test images, and several bugs fixes. See below for a full list of changes and some example code exploring the new functionality.
Introduction I recently attended the Public Health Research and Science Conference, run by Public Health England (PHE), at the University of Warwick. I was mainly there to present some work that I have been doing (along with my co-authors) estimating the direct effects of the 2005 change in BCG vaccination policy on Tuberculosis (TB) incidence rates (slides) but it was also a great opportunity to see what research is being done within, and partnered with, PHE.
This is a quick post exploring estimates of the case fatality ratio for Tuberculosis (TB) from data published by the World Health Organisation (WHO). It makes use of getTBinR (which is now on CRAN), pacman for package management, hrbrthemes for plot themes, and pathwork for combining multiple plots into a storyboard. For an introduction to using getTBinR to explore the WHO TB data see this post.
It is estimated that in 2016 there was more than 10 million cases of active TB, with 1.
In November I attended Epidemics, which is a conference focused on modelling infectious diseases. There was a lot of great work and perhaps most excitingly a lot of work being offered as R packages.
I’ve recently begun wrapping all my analytical work in R packages, as it makes producing reproducible research a breeze! Unfortunately all of this work is still making it’s way towards publication and for a variety of reasons can’t be shared until it has passed this hurdle.
This interactive dashboard uses data on Tuberculosis incidence from 1913-1916 released by Public Health England and combines it with data on the interventions against Tuberculosis that have been discovered/implemented over the last century. The data was cleaned and imported into R using the tbinenglanddataclean R package, which also contains information on how to apply for additional data, scripts to clean data extracts and graphing functions to visualise them. The dashboard is a work in progress and additional interventions, new figures and increased interactivity will be added over time.