Test cost sensitivity using PRCC
test_prcc(df = NULL, params = NULL, target_time = NULL)
df | A dataframe of cost effectiveness data. As produced by |
---|---|
params | A dataframe of parameters used to generate model simulations. See |
target_time | Numeric, the time at which to estimate the model sensitivity. If not specified then this will default to the last fitted point that the model has produced output for. |
A data frame containing the names of the parameters in the model, the correlation with the outcome and the p value of this correlation
## Code test_prcc#> function (df = NULL, params = NULL, target_time = NULL) #> { #> time <- NULL #> value <- NULL #> Parameter <- NULL #> p.value <- NULL #> df <- df %>% dplyr::filter(time == target_time) %>% select_if(~var(.) > #> 0) #> sample <- params %>% bind_cols(df %>% select(value) %>% setNames("Observation")) #> prcc <- epi.prcc(sample) %>% mutate(Parameter = colnames(params)) %>% #> select(Parameter, gamma, p.value) %>% arrange(desc(abs(gamma))) #> return(prcc) #> } #> <bytecode: 0xa03c0b8> #> <environment: namespace:ceplotr>