
Stan - an introduction without the scary parts

Sam Abbott
@seabbs
samabbott.co.uk

https://twitter.com/seabbs/
https://samabbott.co.uk/

Aim

High level overview + the tools for learning more

Don’t panic

Hitchhiker's Guide to the Galaxy

Overview

1. Who even are you and why are you here?

2. What is stan anyway?

3. How does stan fit models?

4. What kind of models can stan fit?

5. How do I stan?

6. What is it good for?

7. What is it not good for?

8. How did you find learning stan Sam?

9. Summary

Stan - an introduction without the scary parts

Who even are you and why are you here?

Sam Abbott
@seabbs
samabbott.co.uk

https://twitter.com/seabbs/
https://samabbott.co.uk/

I’m a PostDoc, I work for Seb, I think I’m great, and I’m really generally confused

Sam Abbott
@seabbs
samabbott.co.uk

https://twitter.com/seabbs/
https://samabbott.co.uk/

Stan - an introduction without the scary parts

What is stan anyway?

Sam Abbott
@seabbs
samabbott.co.uk

https://twitter.com/seabbs/
https://samabbott.co.uk/

What

Stan is a state-of-the-art platform for statistical modeling and high-performance statistical computation.
Thousands of users rely on Stan for statistical modeling, data analysis, and prediction in the social,
biological, and physical sciences, engineering, and business.

Users specify log density functions in Stan’s probabilistic programming language and get:

● full Bayesian statistical inference with MCMC sampling (NUTS, HMC)
● approximate Bayesian inference with variational inference (ADVI)
● penalized maximum likelihood estimation with optimization (L-BFGS)

Stan’s math library provides differentiable probability functions & linear algebra (C++ autodiff). Additional R
packages provide expression-based linear modeling, posterior visualization, and leave-one-out
cross-validation.

Stan - an introduction without the scary parts

How does stan fit models?

Sam Abbott
@seabbs
samabbott.co.uk

https://twitter.com/seabbs/
https://samabbott.co.uk/

What - Bayes

https://en.wikipedia.org/wiki/Bayes%27_theorem

What - MCMC

https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo

Markov chain Monte Carlo (MCMC) methods comprise a class of algorithms for sampling from a
probability distribution. By constructing a Markov chain that has the desired distribution as its
equilibrium distribution, one can obtain a sample of the desired distribution by recording states
from the chain.

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Markov_chain#Steady-state_analysis_and_limiting_distributions

What - HMC

https:/ /jwmi.github.io/BMB/18-Hamiltonian-Monte-Carlo-and-NUTS.pdf

What - HMC

https:/ /jwmi.github.io/BMB/18-Hamiltonian-Monte-Carlo-and-NUTS.pdf

What - NUTs

https:/ /jwmi.github.io/BMB/18-Hamiltonian-Monte-Carlo-and-NUTS.pdf

Stan - an introduction without the scary parts

What is stan anyway?

Sam Abbott
@seabbs
samabbott.co.uk

https://twitter.com/seabbs/
https://samabbott.co.uk/

Michael Betancourt betanalpha.github.io/assets/case_studies/stan_intro.html

https://betanalpha.github.io/assets/case_studies/stan_intro.html

- The probabilistic programming that we use to specify our models

- Transpiled into C++

- Think of it as the child of R and C++

Imperative, strongly and statically typed, domain specific probabilistic
programming language that defines a log probability density function through
programming blocks.

Designed to complement these algorithms [NUTs-HMC] by specifying not just any
density function but differentiable density functions defined over continuous
product spaces.

Michael Betancourt betanalpha.github.io/assets/case_studies/stan_intro.html

Stan Language Library

https://betanalpha.github.io/assets/case_studies/stan_intro.html

Michael Betancourt betanalpha.github.io/assets/case_studies/stan_intro.html

https://betanalpha.github.io/assets/case_studies/stan_intro.html

Critically the Stan Math Library also implements automatic differentiation
for all of its functions.

Automatic differentiation is a technique for efficiently evaluating the exact
values of the gradient of a C++ function at a given set of inputs.

This means that every Stan program defines both a target log probability
density function and the corresponding gradient function without any
additional effort from the user.

This then allows the use of extremely effective gradient-based algorithms
like Hamiltonian Monte Carlo without the user having to pour through
pages upon pages of analytic derivative calculations.

Michael Betancourt betanalpha.github.io/assets/case_studies/stan_intro.html

Stan Math Library

https://betanalpha.github.io/assets/case_studies/stan_intro.html

Michael Betancourt betanalpha.github.io/assets/case_studies/stan_intro.html

rstan

 cmdstanr

https://betanalpha.github.io/assets/case_studies/stan_intro.html
https://mc-stan.org/rstan/
https://mc-stan.org/cmdstanr/articles/cmdstanr.html

Stan - an introduction without the scary parts

What kind of models can stan fit?

Sam Abbott
@seabbs
samabbott.co.uk

https://twitter.com/seabbs/
https://samabbott.co.uk/

No discrete parameters (unless they can be marginalised away)

Otherwise it is gravy

Integrated ODE solvers

Model complexity limited by computational costs of MCMC

Stan - an introduction without the scary parts

How do I stan?

Sam Abbott
@seabbs
samabbott.co.uk

https://twitter.com/seabbs/
https://samabbott.co.uk/

My first model - Introduction

- We want to model viral load for COVID-19

- For some number of people we have some
number of PCR test results and the date
these were done on.

- For these tests we have the Cycle
Thresholds (CTs) which we use as a viral
load proxy

- We want to model population viral load
from infection and understand if it differs
by variant etc.

 with Timothy Russell et al.

My first model - Functions

- We can use functions in stan as in other
languages

- Like C/C++ we need to define the input
and return types.

- We can compile these functions and use
them like native R functions for fun and
testing if we want to.

- We can’t use R functions but we can
integrate C++ code if we are very fancy.

My first model - Functions
Piecewise linear with 2 change points

- Really complicated and scientific so lets make
some assumptions.

- Viral load changes linearly on the log scale.

- Initially load goes up

- Hits a turning point at which time clearance
begins

- Later on clearance rate may change or it may
not.

- Everything is on the CT scale which is inverted
and has a minimum at 0.

My first model - Data

My first model - Transformed data

My first model - Parameters

My first model - Transformed parameters

My first model - Model

My first model - Generated quantities

My first model - Fitting

rstan

 cmdstanr

https://mc-stan.org/rstan/
https://mc-stan.org/cmdstanr/articles/cmdstanr.html

My first model - Posterior predictions

My first model - Summary

Stan - an introduction without the scary parts

What is it good for?

Sam Abbott
@seabbs
samabbott.co.uk

https://twitter.com/seabbs/
https://samabbott.co.uk/

Why

- Are you an expert in MCMC? No? Then maybe don’t roll your own because it
is not the 1990s anymore.

- Community, documentation, and ongoing development.

- A good enough tool for a broad range of problems. Useful if wanting to do
anything other than compartmental models

- Clean domain-specific language (DSL) which can be extended with functions
written in C++.

- Huge range of tools available for evaluating stan models and handling the
output more generally

- Massive amount of work done in stan - easy to understand others work.

Stan - an introduction without the scary parts

What is it not good for?

Sam Abbott
@seabbs
samabbott.co.uk

https://twitter.com/seabbs/
https://samabbott.co.uk/

Why not

- MCMC often not a great choice for complex compartmental model systems. For these
models tools that support PMCMC or SMC^2 are likely more optimal (Libbi/Birch,
ODIN/Dust, Turing.jl, etc).

- Has to compile. You have to interact, debug etc with compiled code. This is gross.

- Unless you are pro debugging involves trying to fit the model again and again. Not
much fun.

- Hard to use programmatically across models (you may find yourself writing a DSL
generator -though see {adjustr}).

- Not a full language so for software development can be limiting. Better bets here are
Turing.jl, PyMc3, numpyro etc.

- Interaction with fit model objects is not ideal but this is an area of work in the community
(and the situation is much better than for other tools).

Stan - an introduction without the scary parts

How did learning stan make you feel Sam?

Sam Abbott
@seabbs
samabbott.co.uk

https://twitter.com/seabbs/
https://samabbott.co.uk/

Sad, confused, bemused, frightened, and angry

Stan - an introduction without the scary parts

How do you feel now Sam?

Sam Abbott
@seabbs
samabbott.co.uk

https://twitter.com/seabbs/
https://samabbott.co.uk/

(still no idea what is happening)

Stan - an introduction without the scary parts

Summary

Sam Abbott
@seabbs
samabbott.co.uk

https://twitter.com/seabbs/
https://samabbott.co.uk/

Summary

- Stan is a state-of-the-art platform for statistical modeling and high-performance
statistical computation.

- There are now several of these. Stan’s key strength is its community and large suite of
tools. It is also as fast or faster than the competition

- Weakness is that limited to what stan supports, it is a compiled language, and not a full
programming language.

- Join the #stan slack and get chatting (it is just me talking to myself at the moment).

More from me?

- Some notes on stan for compartmental models + resources:
https://github.com/seabbs/cmmid.stan.seir

- Here is a recording + slides of me talking about my work on COVID-19 (all done in stan)
with links out to all the code etc: https://bit.ly/covid-19-case-studies

https://github.com/seabbs/cmmid.stan.seir

