This function relies on getTBinR to source WHO tuberculosis (TB) data. It then curates this data - extracting the country, region, year, TB incidence, TB incidence rates (+ CI's), the proportion of cases with extra-pulmonary TB, and the proportion of cases with HIV (+ CI's). Data prior to 2000 is dropped.

tb_data(inc_floor = NULL, inc_rate_floor = NULL, ...)

Arguments

inc_floor

Numeric, defaults to NULL. What is the minimum incidence to keep in the data.

inc_rate_floor

Numeric, defaults to NULL. What is the minimum incidence rate (per 100,000) to keep in the data.

...

Additional arguments to pass to getTBinR::get_tb_burden.

Value

A dataframe containing curated TB data from the WHO.

See also

get_tb_burden

Examples

## Get the data tb_data()
#> Loading data from: /tmp/RtmpzHlUlm/tb_burden.rds
#> Loading data from: /tmp/RtmpzHlUlm/mdr_tb.rds
#> Joining TB burden data and MDR TB data.
#> Getting additional dataset: Latent TB infection
#> Loading data from: /tmp/RtmpzHlUlm/latent_tb_infection.rds
#> Getting additional dataset: Notification
#> Loading data from: /tmp/RtmpzHlUlm/notification.rds
#> Getting additional dataset: Drug resistance surveillance
#> Loading data from: /tmp/RtmpzHlUlm/drug_resistance_surveillance.rds
#> Getting additional dataset: Non-routine HIV surveillance
#> Loading data from: /tmp/RtmpzHlUlm/non-routine_hiv_surveillance.rds
#> Getting additional dataset: Outcomes
#> Loading data from: /tmp/RtmpzHlUlm/outcomes.rds
#> Getting additional dataset: Budget
#> Loading data from: /tmp/RtmpzHlUlm/budget.rds
#> Getting additional dataset: Expenditure and utilisation
#> Loading data from: /tmp/RtmpzHlUlm/expenditure_and_utilisation.rds
#> Getting additional dataset: Policies and services
#> Loading data from: /tmp/RtmpzHlUlm/policies_and_services.rds
#> Getting additional dataset: Community engagement
#> Loading data from: /tmp/RtmpzHlUlm/community_engagement.rds
#> Getting additional dataset: Laboratories
#> Loading data from: /tmp/RtmpzHlUlm/laboratories.rds
#> Joining TB burden data and additional datasets.
#> # A tibble: 4,474 x 12 #> country iso3 g_whoregion year tb_cases tb_inc tb_inc_lo tb_inc_hi #> <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> #> 1 Afghan… AFG Eastern Me… 2000 39000 190 123 271 #> 2 Afghan… AFG Eastern Me… 2001 41000 189 123 271 #> 3 Afghan… AFG Eastern Me… 2002 43000 189 122 270 #> 4 Afghan… AFG Eastern Me… 2003 45000 189 122 270 #> 5 Afghan… AFG Eastern Me… 2004 47000 189 122 270 #> 6 Afghan… AFG Eastern Me… 2005 48000 189 122 270 #> 7 Afghan… AFG Eastern Me… 2006 50000 189 122 270 #> 8 Afghan… AFG Eastern Me… 2007 51000 189 122 270 #> 9 Afghan… AFG Eastern Me… 2008 52000 189 122 270 #> 10 Afghan… AFG Eastern Me… 2009 54000 189 123 270 #> # … with 4,464 more rows, and 4 more variables: prop_tb_ep <dbl>, #> # prop_hiv <dbl>, prop_hiv_lo <dbl>, prop_hiv_hi <dbl>