Default model priors
Usage
epict_priors(individual_variation = c(0, 0.05), include_descriptive = FALSE)
Arguments
- individual_variation
A vector of length two specifying the default mean and standard deviation of individual-level variation.
- include_descriptive
Logical, defaults
FALSE
. Should an extended list of priors be returned including transformed parameters. This is useful when transforming model output and for user exploration.
See also
Functions used for modelling
epict_convert_to_list()
,
epict_inits()
,
epict_model()
Examples
epict_priors()
#> variable name
#> 1: t_inf Time between infection and first positive test
#> 2: c_thres Ct value at clearance of infection
#> 3: c_p Ct value at peak
#> 4: t_p Time at peak Ct
#> 5: c_s Ct value at switch
#> 6: t_s Time at switch Ct
#> 7: t_clear Time at clearance of infection
#> 8: inc_mean Incubation period (log) mean
#> 9: inc_sd Incubation period (log) standard deviation
#> 10: sigma Observation standard deviation
#> 11: lkj Lewandowski-Kurowicka-Joe distribution
#> detail
#> 1: Offset by onset if available
#> 2: Offset by user specified limit of Ct detection
#> 3: Logit scale offset by latent limit of detection/Ct at switch
#> 4: Log scale
#> 5: Logit scale offset by latent limit of detection
#> 6: Log scale relative to the time at peak Ct
#> 7: Relative to time at peak and switch C
#> 8: Parameterised as a log-normal distribution
#> 9: Parameterised as a log-normal distribution
#> 10: Assuming a normal error model
#> 11: Prior used for the individual-level correlation matrix. There is \n one parameter which at 1 represents a uniform prior. Smaller values indicate strong correlations, and larger values weaker correlations
#> distribution intercept_mean
#> 1: Normal (truncated by onset or 0) 5.00
#> 2: Normal (truncated by user specified limit of detection) 10.00
#> 3: Normal 0.00
#> 4: Normal 1.61
#> 5: Normal 0.00
#> 6: Normal 1.61
#> 7: Normal 2.30
#> 8: Normal 1.62
#> 9: Zero truncated normal 0.42
#> 10: Zero truncated normal 2.00
#> 11: Lewandowski-Kurowicka-Joe (LKJ) distribution 1.00
#> intercept_sd individual_variation_mean individual_variation_sd
#> 1: 5.00 NA NA
#> 2: 10.00 NA NA
#> 3: 1.00 0 0.05
#> 4: 0.50 0 0.05
#> 5: 1.00 0 0.05
#> 6: 0.50 0 0.05
#> 7: 0.50 0 0.05
#> 8: 0.06 NA NA
#> 9: 0.07 NA NA
#> 10: 2.00 NA NA
#> 11: NA NA NA
# Also include descriptive parameters
epict_priors(include_descriptive = TRUE)
#> variable name
#> 1: t_inf Time between infection and first positive test
#> 2: c_thres Ct value at clearance of infection
#> 3: c_p Ct value at peak
#> 4: t_p Time at peak Ct
#> 5: c_s Ct value at switch
#> 6: t_s Time at switch Ct
#> 7: t_clear Time at clearance of infection
#> 8: inc_mean Incubation period (log) mean
#> 9: inc_sd Incubation period (log) standard deviation
#> 10: sigma Observation standard deviation
#> 11: lkj Lewandowski-Kurowicka-Joe distribution
#> 12: ct_shift Ct intercept adjustment
#> 13: ct_scale Ct multiplicative adjustment
#> 14: nat_inc_mean Incubation period (mean)
#> 15: nat_inc_sd Incubation period (standard deviation)
#> detail
#> 1: Offset by onset if available
#> 2: Offset by user specified limit of Ct detection
#> 3: Logit scale offset by latent limit of detection/Ct at switch
#> 4: Log scale
#> 5: Logit scale offset by latent limit of detection
#> 6: Log scale relative to the time at peak Ct
#> 7: Relative to time at peak and switch C
#> 8: Parameterised as a log-normal distribution
#> 9: Parameterised as a log-normal distribution
#> 10: Assuming a normal error model
#> 11: Prior used for the individual-level correlation matrix. There is \n one parameter which at 1 represents a uniform prior. Smaller values indicate strong correlations, and larger values weaker correlations
#> 12: Cycle threshold intercept adjustment with an intercept set to 0 (i. no \n adjustment. This is adjusted using `adjustment_formula()`
#> 13: Cycle threshold gradient adjustment with an intercept set to 1 (i. no \n adjustment. This is adjusted using `adjustment_formula()`
#> 14: Incubation period mean on the natural scale
#> 15: Incubation period standard deviation on the natural scale
#> distribution intercept_mean
#> 1: Normal (truncated by onset or 0) 5.00
#> 2: Normal (truncated by user specified limit of detection) 10.00
#> 3: Normal 0.00
#> 4: Normal 1.61
#> 5: Normal 0.00
#> 6: Normal 1.61
#> 7: Normal 2.30
#> 8: Normal 1.62
#> 9: Zero truncated normal 0.42
#> 10: Zero truncated normal 2.00
#> 11: Lewandowski-Kurowicka-Joe (LKJ) distribution 1.00
#> 12: NA
#> 13: NA
#> 14: NA
#> 15: NA
#> intercept_sd individual_variation_mean individual_variation_sd
#> 1: 5.00 NA NA
#> 2: 10.00 NA NA
#> 3: 1.00 0 0.05
#> 4: 0.50 0 0.05
#> 5: 1.00 0 0.05
#> 6: 0.50 0 0.05
#> 7: 0.50 0 0.05
#> 8: 0.06 NA NA
#> 9: 0.07 NA NA
#> 10: 2.00 NA NA
#> 11: NA NA NA
#> 12: NA NA NA
#> 13: NA NA NA
#> 14: NA NA NA
#> 15: NA NA NA