Link data relevant to zoonotic TB data. Data is linking process maximises preserved data so any analysis with this data may need additional exclusions and/or munging.

link_data(z_tb_humans = NULL, tb_humans = NULL, z_tb_animals = NULL,
  demo = NULL, animal_demo = NULL, verbose = TRUE)

Arguments

z_tb_humans

Data on zoonotic TB in humans - formatted as EstZoonoticTB::zoonotic_tb_humans. Defaults to EstZoonoticTB::zoonotic_tb_humans.

tb_humans

Data on TB in humans - formatted as EstZoonoticTB::tb_data(). Defaults to EstZoonoticTB::tb_data().

z_tb_animals

Data on zoonotic TB in animals - formatted as EstZoonoticTB::zoonotic_tb_animals. Defaults to EstZoonoticTB::zoonotic_tb_humans.

demo

Data on demographics - formatted as EstZoonoticTB::demographics. Defaults to EstZoonoticTB::demographics.

animal_demo

Data on demographics in animals - formatted as EstZoonoticTB::animal_demographics. Defaults to EstZoonoticTB::animal_demographics.

verbose

Logical, defaults to TRUE. Should verbose progress messages be shown.

Value

A dataframe of linked data containing all available global data relevant to zTB in humans.

Examples

## Linked data relying on package defaults df <- link_data()
#> Joining human and animal demographic data.
#> Countries with data present for demographics and not animal demographics:
#> [1] "Andorra" "Anguilla" #> [3] "Aruba" "Channel Islands" #> [5] "China, Macao SAR" "Gibraltar" #> [7] "Holy See" "Isle of Man" #> [9] "Kiribati" "Maldives" #> [11] "Marshall Islands" "Mayotte" #> [13] "Monaco" "Nauru" #> [15] "Northern Mariana Islands" "Palau" #> [17] "San Marino" "Tokelau" #> [19] "Turks and Caicos Islands" "Tuvalu"
#> Countries with data present for animal demographics and not demographics:
#> [1] "Norfolk Island"
#> Joining TB incidence in humans data and zTB presence in animals data using country codes.
#> Countries with data present for TB incidence and not zTB in animals:
#> [1] "American Samoa" #> [2] "Anguilla" #> [3] "Antigua and Barbuda" #> [4] "Aruba" #> [5] "Bahamas" #> [6] "Benin" #> [7] "Bermuda" #> [8] "Bonaire, Saint Eustatius and Saba" #> [9] "British Virgin Islands" #> [10] "Cameroon" #> [11] "Cayman Islands" #> [12] "China, Macao SAR" #> [13] "Curaçao" #> [14] "Democratic People's Republic of Korea" #> [15] "Dominica" #> [16] "Equatorial Guinea" #> [17] "Gabon" #> [18] "Grenada" #> [19] "Guam" #> [20] "Guatemala" #> [21] "Lebanon" #> [22] "Luxembourg" #> [23] "Maldives" #> [24] "Monaco" #> [25] "Montserrat" #> [26] "Nauru" #> [27] "Niue" #> [28] "Northern Mariana Islands" #> [29] "Puerto Rico" #> [30] "Rwanda" #> [31] "Saint Kitts and Nevis" #> [32] "Seychelles" #> [33] "Sint Maarten (Dutch part)" #> [34] "Solomon Islands" #> [35] "Tajikistan" #> [36] "Togo" #> [37] "Tokelau" #> [38] "Turks and Caicos Islands" #> [39] "Tuvalu" #> [40] "Wallis and Futuna Islands" #> [41] "Yemen" #> [42] "Netherlands Antilles" #> [43] "Serbia & Montenegro"
#> Countries with data present for zTB in animals and not TB incidence:
#> [1] "Ceuta" "Chinese Taipei" #> [3] "Falkland Islands (Malvinas)" "Faroe Islands" #> [5] "French Guiana" "Guadeloupe (France)" #> [7] "Liechtenstein" "Martinique" #> [9] "Mayotte (France)" "Melilla" #> [11] "Reunion" "St. Helena"
#> Joining zTB incidence in humans data and all other TB data using country names
#> Joining TB data and demographic data using country names.
#> Countries with data present for TB not for demographics:
#> [1] "Bonaire, Saint Eustatius and Saba" "Curaçao" #> [3] "Sint Maarten (Dutch part)" "West Bank and Gaza Strip" #> [5] "Netherlands Antilles" "Serbia & Montenegro" #> [7] "Ceuta" "Chinese Taipei" #> [9] "Guadeloupe (France)" "Mayotte (France)" #> [11] "Melilla" "St. Helena"
#> Countries with data present demographics and not TB:
#> (Some mismatches are to be expected here due to historic country names)
#> [1] "Belgium-Luxembourg" "Channel Islands" #> [3] "Czechoslovakia" "Ethiopia PDR" #> [5] "Gibraltar" "Guadeloupe" #> [7] "Holy See" "Isle of Man" #> [9] "Mayotte" NA #> [11] "Pacific Islands Trust Territory" "Palestine" #> [13] "Saint Pierre and Miquelon" "Sudan (former)" #> [15] "United States Virgin Islands" "USSR" #> [17] "Western Sahara" "Yugoslav SFR" #> [19] "Norfolk Island"
df
#> # A tibble: 15,465 x 26 #> country country_code g_whoregion year tb_cases tb_inc tb_inc_lo tb_inc_hi #> <fct> <fct> <fct> <dbl> <int> <dbl> <dbl> <dbl> #> 1 Afghan… AFG Eastern Me… 2000 39000 190 123 271 #> 2 Afghan… AFG Eastern Me… 2001 41000 189 123 271 #> 3 Afghan… AFG Eastern Me… 2002 43000 189 122 270 #> 4 Afghan… AFG Eastern Me… 2003 45000 189 122 270 #> 5 Afghan… AFG Eastern Me… 2004 47000 189 122 270 #> 6 Afghan… AFG Eastern Me… 2005 48000 189 122 270 #> 7 Afghan… AFG Eastern Me… 2006 50000 189 122 270 #> 8 Afghan… AFG Eastern Me… 2007 51000 189 122 270 #> 9 Afghan… AFG Eastern Me… 2008 52000 189 122 270 #> 10 Afghan… AFG Eastern Me… 2009 54000 189 123 270 #> # … with 15,455 more rows, and 18 more variables: prop_tb_ep <dbl>, #> # prop_hiv <dbl>, prop_hiv_lo <dbl>, prop_hiv_hi <dbl>, #> # z_tb_dom_animal <fct>, z_tb_wild_animal <fct>, z_tb_id <int>, #> # z_tb_geo_coverage <fct>, z_tb_study_pop <fct>, z_tb_multi_year_study <fct>, #> # tb_z_prop <dbl>, tb_z_prop_lo <dbl>, tb_z_prop_hi <dbl>, #> # tb_z_prop_se <dbl>, population <dbl>, prop_rural <dbl>, cattle <int>, #> # cattle_per_head <dbl>